Abstract
The network model of electron orbits coupled by magnetic breakdown is extended to a two-dimensional metal containing dislocations. It is shown that the network is still likely to be a valid representation, but the phase lengths of the arms are altered, and a very low dislocation density (about one per electron orbit) is enough to produce almost complete randomization. The Bloch-like quasi-particles that can travel in straight lines on a perfect network are now heavily scattered, and it is preferable to think of electrons performing a random walk on the arms of the network, although the justification for this procedure is somewhat doubtful. A simpler alternative to Falicov & Sievert's method is presented for calculating the electrical conductivity of a random-phase network, and is extended to cases where randomness affects only some of the phases, as is believed to be the situation in real metals like zinc and magnesium.

This publication has 3 references indexed in Scilit: