Action of 2',2'-difluorodeoxycytidine on DNA synthesis.

  • 15 November 1991
    • journal article
    • Vol. 51 (22), 6110-7
Abstract
The action of the new deoxycytidine analogue 2',2'-difluorodeoxycytidine (dFdC) on DNA synthesis was investigated in whole cells and in vitro assay systems with purified DNA polymerases. DNA synthesis in human lymphoblastoid CEM cells was inhibited by dFdC in a concentration-dependent manner that could not be reversed by exogenous deoxynucleosides. The analogue was incorporated into cellular DNA; most of the incorporated dFdC 5'-monophosphate (dFdCMP) residues were in internucleotide linkage. In vitro DNA primer extension assays demonstrated that dFdC 5'-triphosphate (dFdCTP) competed with deoxycytidine triphosphate for incorporation into the C sites of the growing DNA strand. The ratios of the apparent Km values for the incorporation of dFdCTP and dCTP into a C site of M13mp19 DNA were 21.8 and 22.9 for DNA polymerases alpha and epsilon, respectively. The apparent Ki values of dFdCTP were 11.2 microM for DNA polymerase alpha and 14.4 microM for polymerase epsilon. After dFdCMP incorporation, the primer was extended by one deoxynucleotide before a major pause in the polymerization process was observed. This was in contrast to the action of arabinosylcytosine 5'-triphosphate, which caused both DNA polymerases alpha and epsilon to pause at the site of incorporation. The 3'----5' exonuclease activity of DNA polymerase epsilon was essentially unable to excise nucleotides from DNA containing dFdCMP at either the 3'-end or at an internal position, whereas arabinosylcytosine monophosphate was removed from the 3'-terminus at 37% the rate for deoxynucleotides. The cytotoxic activity of dFdC was strongly correlated with the amount of dFdCMP incorporated into cellular DNA. Our results demonstrate qualitative and quantitative differences in the molecular actions of dFdC and arabinosylcytosine on DNA metabolism, but are consistent with an important role for such incorporation in the toxicity of dFdC.