Visible photoluminescence from porous silicon: A quantum confinement effect mainly due to holes?

Abstract
We present results of photoluminescence experiments performed at 2 and 300 K on porous silicon layers with different porosities. The samples are obtained by electrochemical dissolution of (100) silicon wafers in hydrofluoric solution. The energy of the photoluminescence and its variation with porosity are found in good agreement with a theoretical model of quantum confinement in Si quantum wires. Electrons have to be taken into account, but it is shown that this quantum effect is mainly due (≊60%) to the large confinement of holes.