Environmental Variables Influencing in Vitro Development of Hamster 2-Cell Embryos to the Blastocyst Stage1

Abstract
This study is a systematic analysis of environmental variables influencing development of 2-cell hamster embryos to the blastocyst stage in vitro. Experiments were done using a chemically defined (protein-free) culture medium (HECM-2). Physicochemical variables examined were temperature, the concentrations of CO2, HCO3-, Ca2+, Mg2+, K+, and O2, the presence of a silicone oil overlay, and osmotic pressure. The optimal temperature for development in vitro was 37.5 degrees C; lower temperatures were inhibitory. There was no significant effect on blastocyst development of alterations in the concentrations of NaHCO3, CaCl2, MgCl2, and KCl, or in the ratios of Ca2+:Mg2+ and Na+:K+, over the ranges tested. Development to the blastocyst stage was significantly stimulated by increased CO2 concentrations (7.5% and 10%), by reduced O2 concentrations (10% and 5%), and by the presence of silicone oil overlying the culture medium. Reduction of blastocyst development in the absence of an oil overlay was not caused by increased osmotic pressure. Cleavage stage embryos were not affected by osmolalities ranging from 250 to 350 mOsmols, but blastocyst development was inhibited at greater than or equal to 325 mOsmols. Under optimized conditions (37.5 degrees C, 10% CO2, 25 mM HCO3-, 2.0 mM Ca2+, 0.5 mM Mg2+, 3.0 mM K+, 10% O2, 250-300 mOsmols, with silicone oil overlay), 51-57% of 2-cell hamster embryos developed to the blastocyst stage. This represents a significant improvement over previous "standard" culture conditions, which supported development of 26% blastocysts from 2-cell hamster embryos. The culture system described here provides an adequate baseline response to support detailed investigations into the regulation of embryo development in the hamster.