Role of vascular endothelial growth factor in regulation of physiological angiogenesis
Top Cited Papers
- 1 June 2001
- journal article
- review article
- Published by American Physiological Society in American Journal of Physiology-Cell Physiology
- Vol. 280 (6), C1358-C1366
- https://doi.org/10.1152/ajpcell.2001.280.6.c1358
Abstract
Evidence accumulating over the last decade has established the fundamental role of vascular endothelial growth factor (VEGF) as a key regulator of normal and abnormal angiogenesis. The biological effects of VEGF are mediated by two tyrosine kinase receptors, Flt-1 (VEGFR-1) and KDR (VEGFR-2). The signaling and biological properties of these two receptors are strikingly different. VEGF is essential for early development of the vasculature to the extent that inactivation of even a single allele of the VEGF gene results in embryonic lethality. VEGF is also required for female reproductive functions and endochondral bone formation. Substantial evidence also implicates VEGF as an angiogenic mediator in tumors and intraocular neovascular syndromes, and numerous clinical trials are presently testing the hypothesis that inhibition of VEGF may have therapeutic value.Keywords
This publication has 96 references indexed in Scilit:
- Identification of a Natural Soluble Form of the Vascular Endothelial Growth Factor Receptor, FLT-1, and Its Heterodimerization with KDRBiochemical and Biophysical Research Communications, 1996
- Abnormal blood vessel development and lethality in embryos lacking a single VEGF alleleNature, 1996
- Inducible Gene Targeting in MiceScience, 1995
- Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endotheliumNature, 1995
- Failure of blood-island formation and vasculogenesis in Flk-1-deficient miceNature, 1995
- Vasculotropin/Vascular Endothelial Growth Factor Induces Differentiation in Cultured OsteoblastsBiochemical and Biophysical Research Communications, 1994
- Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor.Proceedings of the National Academy of Sciences, 1993
- Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivoNature, 1993
- Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factorBiochemical and Biophysical Research Communications, 1992
- Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cellsBiochemical and Biophysical Research Communications, 1989