A benchmark comparison of numerical methods for infinite Prandtl number thermal convection in two-dimensional Cartesian geometry

Abstract
A comparison is made between seven different numerical methods for calculating two-dimensional thermal convection in an infinite Prandtl number fluid. Among the seven methods are finite difference and finite element techniques that have been used to model thermal convection in the Earth's mantle. We evaluate the performance of each method using a suite of four benchmark problems, ranging from steady-state convection to intrinsically time-dependent convection with recurring thermal boundary layer instabilities. These results can be used to determine the accuracy of other computational methods, and to assist in the development of new ones.