Abstract
Modification of pig kidney fructose 1,6-bisphosphatase with 2,3-butanedione (in the presence of AMP) results in the loss of activation of the enzyme by monovalent cations. Under these conditions about 8 arginyl residues per mole of enzyme were modified. No other residues were modified. No loss of monovalent cation activation occurs when modification with 2,3-butanedione is carried out in the presence of AMP plus the substrate fructose 1,6-bisphosphate and 3.2 less arginyl residues were modified. Since fructose 1,6-bisphosphatase contains 4 subunits, it is suggested that one arginyl residue per subunit plays an essential role in monovalent cation activation of the enzyme. Studies on sulfhydryl group reactivity toward 5,5'-dithiobis(2-nitrobenzoic acid) explain the protection exerted by fructose 1,6-bisphosphate against the loss of monovalent cation activation in terms of an enzyme conformational change induced by substrate, which makes unreactive the essential arginyl residue. The results of the present paper, as well as previous evidence, are discussed in terms of the mechanism of monovalent cation activation of fructose 1,6-biphosphatase.