Magnetic susceptibility and low-temperature structure of the linear chain cuprate
- 1 March 1995
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 51 (9), 5994-6001
- https://doi.org/10.1103/physrevb.51.5994
Abstract
Magnetic susceptibility measurements for were made from 2 to 800 K, and a strong dependence upon oxygen content (δ) was observed. Samples synthesized under oxygen, followed by various nitrogen treatments, exhibited markedly different Curie-Weiss-type terms, and we discuss possible origins for this behavior. High-temperature magnetic susceptibility measurements for the sample with the smallest Curie-Weiss-type term clearly show the increase with temperature expected from the Bonner-Fisher model for a spin-1/2 one-dimensional (1D) Heisenberg antiferromagnet. This is a direct experimental observation of 1D magnetic behavior in this system. The in-chain superexchange coupling constant, as determined by a fit to the Bonner-Fisher model, is ‖J‖/≊ K, comparable to the values observed in the two-dimensional layered cuprates. Estimates of the interchain magnetic interaction indicate this material may be the best realization of a 1D spin-1/2 Heisenberg antiferromagnet reported to date. Low-temperature neutron and synchrotron x-ray powder-diffraction studies of show that the low-temperature structure of this system has Immm space-group symmetry, the same structure reported at room temperature, indicating that this material, in contrast to , does not undergo any structural transformations upon cooling. The absence of crystallographic distortions precludes a magnetic anisotropy contribution from a Dzyaloshinsky-Moriya interaction, implying that should be a nearly ideal spin-1/2 antiferromagnetic Heisenberg chain compound, in agreement with the magnetic susceptibility results. A search for the presence of long-range three-dimensional antiferromagnetic order by magnetic neutron powder diffraction at temperatures as low as 1.5 K was not successful, although we estimate an upper limit for the size of the ordered moment which could have been detected to be ∼0.1 per ion.
Keywords
This publication has 30 references indexed in Scilit:
- Muon-spin-rotation measurements in infinite-layer and infinite-chain cuprate antiferromagnets: andPhysical Review B, 1993
- A new family of copper oxide superconductors Srn+1CunO2n+1+δ stabilized at high pressureNature, 1993
- Preparation and electrical and magnetic properties of Sr2?xNaxCuO3 (0 ? x ? 1) solid solutionsZeitschrift für anorganische und allgemeine Chemie, 1992
- Synthesis and properties of compounds in the system Sr2CuO3−Ca2CuO3Journal of Solid State Chemistry, 1992
- Normal state magnetism of the high Tc cuprate superconductorsJournal of Magnetism and Magnetic Materials, 1991
- Alkaline earth copper oxidesMaterials Research Bulletin, 1991
- Structure and oxidation state relationships in ternary copper oxidesJournal of Solid State Chemistry, 1989
- Magnetic susceptibility of Ca2CuO3Solid State Communications, 1988
- Über Erdalkalimetall—Oxocuprate. II. Zur Kenntnis von Sr2CuO3Zeitschrift für anorganische und allgemeine Chemie, 1969
- Linear Magnetic Chains with Anisotropic CouplingPhysical Review B, 1964