Surface confined ionic liquid as a stationary phase for HPLC

Abstract
Trimethoxysilane “ionosilane” derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 µm diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and 13C and 29Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 µmol m−2 for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of the ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.