Quantum cellular automata

Abstract
The authors formulate a new paradigm for computing with cellular automata (CAS) composed of arrays of quantum devices-quantum cellular automata. Computing in such a paradigm is edge driven. Input, output, and power are delivered at the edge of the CA array only; no direct flow of information or energy to internal cells is required. Computing in this paradigm is also computing with the ground state. The architecture is so designed that the ground-state configuration of the array, subject to boundary conditions determined by the input, yields the computational result. The authors propose a specific realization of these ideas using two-electron cells composed of quantum dots. The charge density in the cell is very highly polarized (aligned) along one of the two cell axes, suggestive of a two-state CA. The polarization of one cell induces a polarization in a neighboring cell through the Coulomb interaction in a very non-linear fashion. Quantum cellular automata can perform useful computing. The authors show that AND gates, OR gates, and inverters can be constructed and interconnected.