Abstract
Rates of synthesis of cyclic 3′,5′-adenosine monophosphate (cAMP) were measured in cultures of Escherichia coli aerating without a carbon source. This technique provides a representative measure of adenylate cyclase activity in the absence of inhibition caused by transport of the carbon source. Adenylate cyclase activity was found to vary more than 20-fold depending on the carbon source that had been available during growth. Synthesis of cAMP in cells aerating in the absence of the carbon source was highest when cells had been grown with glucose or fructose which inhibit adenylate cyclase activity severely. Synthesis of cAMP was much lower when cells had been grown with glycerol or succinate which cause only minimal inhibition of the activity. The variation in cAMP synthesis due to different carbon sources requires a functional cAMP receptor protein (CRP). Crp- mutants synthesize cAMP at comparable rates regardless of the carbon source that afforded growth. A novel mutant of E. coli having a CRP no longer dependent on cAMP has been isolated and characterized. Adenylate cyclase activity in this mutant no longer responds normally to variations in the carbon source.