Abstract
Four-rotor micro aerial robots, so called quadrotor UAVs, are one of the most preferred type of unmanned aerial vehicles for near-area surveillance and exploration both in military and commercial in- and outdoor applications. The reason is the very easy construction and steering principle using four rotors in a cross configuration. However, stabilizing control and guidance of these vehicles is a difficult task because of the nonlinear dynamic behavior. In addition, the small payload and the reduced processing power of the onboard electronics are further limitations for any control system implementation. This paper describes the development of a nonlinear vehicle control system based on a decomposition into a nested structure and feedback linearization which can be implemented on an embedded microcontroller. Some first simulation results underline the performance of this new control approach for the current realization.

This publication has 5 references indexed in Scilit: