Knowledge of quantitative digestion and metabolism in ruminants was developed most rapidly when isotope dilution techniques became easy to apply, facilitated by improved instrumentation and mathematical approaches. The Armidale group led by Professor E. F. Annison and Dr D. B. Lindsay were at the forefront of these developments in the late 1950's. Since then knowledge in this area has developed at an ever increasing rate. The data that accumulated from the quantitative approach led to simple or complex models of animal digestion, metabolism and growth. These in turn led to much questioning of the dogma of feed evaluation and feeding standards as they applied in practice, especially for ruminants fed on poor quality forages. The knowledge that developed has clearly shown that the way toward substantial increases in productivity of ruminants on forage based diets is through the balanced nutrient approach that considers the efficiency of the rumen ecosystem and the availability of dietary nutrients post-ruminally. With increasing emphasis on quality-beef markets at the present time, it seems likely that the time is ripe for application of much of this knowledge. The major breakthroughs have come about by recognition of the nutrients required to balance a ruminant's diet where the animal depends on the end-products of rumen fermentation (i.e. on a forage-based diet). When this is achieved, the increase in efficiency of use of nutrients lifts the overall nutrition of the animal to a level that is well above that predicted from feeding standards, based on the metabolizable energy content of the supplement or the total diet. This understanding, together with the stoichiometry of rumen fermentation, has indicated an important approach to help ameliorate the greenhouse effect, that is, lowering of enteric methane production per unit of feed intake or per unit of animal products from ruminants by strategic supplementation.