Abstract
The time course of insulin activation of sodium and potassium ion activated adenosinetriphosphatase [(Na+,K+)ATPase] was studied in the rat adipocyte and was compared to activation of the glucose transporter. Under conditions in which the binding of insulin to its cell surface receptor was not rate limiting, a distinct time lag was apparent between insulin addition and stimulation of transport activity. At 37 degrees C, 40-50 s elapsed before an increase in Rb+ uptake [a measure of (Na+,K+)ATPase transport activity] or 2-deoxyglucose uptake could be observed. This lag time increased in an identical manner for both transport processes as the temperature was lowered to 23 degrees C. Addition of the insulinomimetic agent hydrogen peroxide also produced a lag time similar to that for insulin before activation of Rb+ and 2-deoxyglucose uptakes was detected. These data provide the first evidence of a discrete time lag involved during stimulation of the adipocyte (Na+,K+)ATPase. A model for the molecular mechanism of insulin activation of (Na+,K+)ATPase is presented that incorporates these results into the hypothesis of insulin mediated "translocation" of glucose transporters to the plasma membrane.