Evidence that eukaryotic triosephosphate isomerase is of alpha-proteobacterial origin

Abstract
We have cloned and sequenced genes for triosephosphate isomerase (TPI) from the gamma-proteobacterium Francisella tularensis, the green non-sulfur bacterium Chloroflexus aurantiacus, and the alpha-proteobacterium Rhizobium etli and used these in phylogenetic analysis with TPI sequences from other members of the Bacteria, Archaea, and Eukarya. These analyses show that eukaryotic TPI genes are most closely related to the homologue from the alpha-proteobacterium and most distantly related to archaebacterial homologues. This relationship suggests that the TPI genes present in modern eukaryotic genomes were derived from an alpha-proteobacterial genome (possibly that of the protomitochondrial endosymbiont) after the divergence of Archaea and Eukarya. Among these eukaryotic genes are some from deeply branching, amitochondrial eukaryotes (namely Giardia), which further suggests that this event took place quite early in eukaryotic evolution.