Abstract
In order to test the role of disturbance and the effects of disturbance frequency on stream communities, an experiment was conducted in New Hope Creek, North Carolina, USA. Patches of cobbles were tumbled 0, 1 or 2 times in a 6 week span. These tumbling disturbances lasted only 30 seconds. The recovery of the macroinvertebrates was monitored. Most taxa showed major reductions in population density immediately following the disturbance. The percent reduction of a given taxon in disturbed vs. control patches ranged from 21.4–95%. Recovery to near normal population levels was achieved in about four weeks. A second disturbance caused similar population reductions as the first one, and delayed the recovery. The macroinvertebrate community in cobbles was demonstrated to be resilient in that populations quickly regained their predisturbance densities. Rare taxa did not selectively colonize disturbed patches. The implications of these findings for the intermediate disturbance hypothesis and the structure of stream communities is discussed. Disturbance is a major determinant of lotic community structure and species diversity.