Ultrasonic tissue characterization of human hypertrophied hearts in vivo with cardiac cycle-dependent variation in integrated backscatter.
- 1 October 1989
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation
- Vol. 80 (4), 925-934
- https://doi.org/10.1161/01.cir.80.4.925
Abstract
Integrated ultrasonic backscatter (IB) is a noninvasive measure of the acoustic properties of myocardium. Previous experimental studies have indicated that altered acoustic properties of the myocardium are reflected by the magnitude of variation of IB during the cardiac cycle. In our study, cardiac cycle-dependent variation of IB was noninvasively measured using a quantitative IB imaging system in 12 patients with uncomplicated pressure-overload hypertrophy and 13 patients with hypertrophic cardiomyopathy. Sixteen normal subjects served as a control. The magnitude of cardiac cycle-dependent variation of IB for the posterior wall was 6.0 +/- 0.9 dB in normal subjects, 5.7 +/- 0.8 dB in the patients with uncomplicated pressure-overload hypertrophy, and 6.7 +/- 2.1 dB in the patients with hypertrophic cardiomyopathy. There were no significant differences among any of these groups. In contrast, the magnitude of cardiac cycle-dependent variation of IB for the septum was significantly smaller in the patients with uncomplicated pressure-overload hypertrophy (2.8 +/- 1.3 dB) and in the patients with hypertrophic cardiomyopathy (3.1 +/- 2.3 dB) than in normal subjects (4.9 +/- 1.0 dB). The magnitude of cardiac cycle-dependent variation of IB was smaller as the wall-thickness index increased (r = -0.53, p less than 0.01, n = 82 for all data). This IB measure also correlated with percent-systolic thickening of the myocardium (r = 0.67, p less than 0.01, n = 82). Thus, alteration in the magnitude of cardiac cycle-dependent variation of IB was observed in hypertrophic hearts and showed apparent regional myocardial differences.This publication has 34 references indexed in Scilit:
- Ultrasound integrated backscatter tissue characterization of remote myocardial infarction in human subjectsJournal of the American College of Cardiology, 1989
- Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A reviewJournal of the American College of Cardiology, 1986
- Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findingsThe American Journal of Cardiology, 1986
- Regional differences in the cyclic variation of myocardial backscatter that parallel regional differences in contractile performanceThe Journal of the Acoustical Society of America, 1984
- Asymmetric septal hypertrophy in patients with aortic stenosis: An adaptive mechanism or a coexistence of hypertrophic cardiomyopathyJournal of the American College of Cardiology, 1983
- Hypertrophic cardiomyopathy: Recent observations regarding the specificity of three hallmarks of the disease: Asymmetric septal hypertrophy, septal disorganization and systolic anterior motion of the anterior mitral leafletThe American Journal of Cardiology, 1980
- Hypertrophie cardiomyopathy: A discussion of nomenclatureThe American Journal of Cardiology, 1979
- Wall stress and patterns of hypertrophy in the human left ventricle.Journal of Clinical Investigation, 1975
- Biological significance of cardiac hypertrophyThe American Journal of Cardiology, 1964
- ASYMMETRICAL HYPERTROPHY OF THE HEART IN YOUNG ADULTSHeart, 1958