EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome.

Abstract
Cryo-electron microscopy has been used to visualize elongation factor G (EF-G) on the 70S ribosome in GDP and GTP states. GTP hydrolysis is required for binding of all the domains of EF-G to the pretranslocational complex and for the completion of translocation. In addition, large conformational changes have been identified in the ribosome. The head of the 30S subunit shifts toward the L1 protein side, and the L7/L12 stalk becomes bifurcated upon EF-G binding. Upon GTP hydrolysis, the bifurcation is reversed and an arc-like connection is formed between the base of the stalk and EF-G.