Cell-cell interactions promote mammary epithelial cell differentiation.

Abstract
Mammary epithelium differentiates in a stromal milieu of adipocytes and fibroblasts. To investigate cell-cell interactions that may influence mammary epithelial cell differentiation, we developed a co-culture system of murine mammary epithelium and adipocytes and other fibroblasts. Insofar as caseins are specific molecular markers of mammary epithelial differentiation, rat anti-mouse casein monoclonal antibodies were raised against the three major mouse casein components to study this interaction. Mammary epithelium from mid-pregnant mice was plated on confluent irradiated monolayers of 3T3-L1 cells, a subclone of the Swiss 3T3 cell line that differentiates into adipocytes in monolayer culture and other cell monolayers (3T3-C2 cells, Swiss 3T3 cells, and human foreskin fibroblasts). Casein was synthesized by mammary epithelium only in the presence of co-cultured cells and the lactogenic hormone combination of insulin, hydrocortisone, and prolactin. Synthesis and accumulation of alpha-, beta-, and gamma-mouse casein within the epithelium was shown by immunohistochemical staining of cultured cells with anti-casein monoclonal antibodies, and the specificity of the immunohistochemical reaction was demonstrated using immunoblots. A competitive immunoassay was used to measure the amount of casein secreted into the culture medium. In a 24-h period, mammary epithelium co-cultured with 3T3-L1 cells secreted 12-20 micrograms beta-casein per culture dish. There was evidence of specificity in the cell-cell interaction that mediates hormone-dependent casein synthesis. Swiss 3T3 cells, newborn foreskin fibroblasts, substrate-attached material ("extracellular matrix"), and tissue culture plastic did not support casein synthesis, whereas monolayers of 3T3-L1 and 3T3-C2 cells, a subclone of Swiss 3T3 cells that does not undergo adipocyte differentiation, did. We conclude that interaction between mammary epithelium and other specific nonepithelial cells markedly influences the acquisition of hormone sensitivity of the epithelium and hormone-dependent differentiation.