The fee Ising model in the cluster variation approximation
- 1 April 1978
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 17 (7), 2926-2936
- https://doi.org/10.1103/physrevb.17.2926
Abstract
The cluster-variation method was used to calculate the critical temperature for the fcc Ising ferromagnet in three different cluster approximations. A scheme for determing a set of independent cluster variables is presented, which considerably simplifies the minimization of the free energy. The system of equations arising from such minimization is solved, in the disordered state, by means of a simple iteration technique. The highest level of approximation treated in this work yields a critical temperature which is only 1.5% above the one estimated by the exact high-temperature expansion of the zero-field susceptibility. Furthermore, the high-temperature expansion for the specific heat gives four exact coefficients and the fifth is determined to within 0.4%.Keywords
This publication has 11 references indexed in Scilit:
- Application of the cluster variation method to the fcc Ising ferromagnetPhysical Review B, 1977
- Phase diagrams of FCC and BCC ordered alloysScripta Metallurgica, 1974
- Superposition approximation and natural iteration calculation in cluster-variation methodThe Journal of Chemical Physics, 1974
- General Structure of the Distribution Functions for the Heisenberg Model and the Ising ModelJournal of Mathematical Physics, 1972
- Pairwise interactions and the ground state of ordered binary alloysActa Metallurgica, 1971
- Atomic Configurations in Binary AlloysPhysical Review B, 1971
- Improvement of the Cluster-Variation MethodThe Journal of Chemical Physics, 1967
- Cluster Variation Method of Cooperative Phenomena and its Generalization IJournal of the Physics Society Japan, 1957
- Methods of approximation in the theory of regular mixturesProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1953
- A Theory of Cooperative PhenomenaPhysical Review B, 1951