Abstract
An experimental investigation of water flow through an abrupt circular-channel expansion is described over a Reynolds number range between 20 and 4200. The shear layer between the central jet and the reverse flow region along the wall downstream behaved differently in the various flow regimes that were observed. With increasing Reynolds number these regimes changed progressively from a laminar flow to an unstable vortex sheetlike flow and then to a more random fluctuating flow. The distance between the step and the reattachment location downstream correspondingly increased, reached a maximum, and then decreased. Of particular significance are the shear layer wave instabilities observed in the shear flow and their relationship to rettachment which apparently has not received much attention previously. Visual observations aided in understanding the results.