Abstract
Gene transfer and antisense therapy offer novel approaches to the study and treatment of vascular diseases. The localized nature of vascular diseases like restenosis has made the application of genetic material an attractive therapeutic option. Viral and nonviral vectors have been developed to facilitate the entry of foreign DNA or RNA into cells. Vector improvement and production, demonstration of vector safety and demonstration of therapeutic efficacy are among the main present challenges. Various strategies have already been shown to be successful in preventing restenosis in animal models and include: the transfer of the herpes simplex virus thymidine kinase associated with ganciclovir; transfection of the cell cycle regulatory genes encoding for the active form of retinoblastoma gene product (Rb) or the cyclin-dependant kinase inhibitor p21, and antisense therapy. Therapeutic angiogenesis using gene transfer is a new strategy for the treatment of severe limb ischemia. Transfection of DNA encoding for the vascular endothelial growth factor has resulted in increasing collateral flow in animal models of peripheral ischemia. This approach is currently being investigated in a clinical trial in patients with distal ischemia. Other potential targets for genetic treatment in cardiovascular diseases include thrombosis, extracellular matrix synthesis and lipid metabolism