The tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone stimulates proliferation of immortalized human pancreatic duct epithelia through β-adrenergic transactivation of EGF receptors
- 10 August 2005
- journal article
- Published by Springer Nature in Zeitschrift für Krebsforschung und Klinische Onkologie
- Vol. 131 (10), 639-648
- https://doi.org/10.1007/s00432-005-0002-7
Abstract
Purpose: Pancreatic ductal adenocarcinoma is an aggressive smoking-associated human cancer in both men and women. The nicotine-derived 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is thought to contribute to the development of these neoplasms in smokers through genotoxic effects. However, NNK has been recently identified as an agonist for both β1- and β2-adrenergic receptors. Binding of NNK to these receptors stimulates proliferation of pulmonary and pancreatic adenocarcinomas cells in vitro and in hamster models. The goal of this study was to elucidate the NNK effects on the signal transduction pathways downstream of both β1- and β2-adrenergic receptors in immortalized human pancreatic HPDE6-c7 cells. Methods: The HPDE6-c7 cells are developed from normal pancreatic duct epithelial cells which are the putative cells of origin of pancreatic ductal adenocarcinoma. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) cell proliferation assays, Western blot and cyclic AMP assays were employed to demonstrate the effects of NNK and other β1- and β2-adrenergic agonists and antagonist treatments on these cells. Results: MTT cell proliferation assays demonstrated that NNK and the classic β-adrenergic agonist, isoproterenol, increased cell proliferation in HPDE6-c7 cells. Western blot and cyclic AMP assays demonstrated that NNK treatments also resulted in: (1) transactivation of the epidermal growth factor receptor, EGFR, (2) an increase in intracellular cyclic AMP accumulation, and (3) phosphorylation of mitogen-activated protein kinase, Erk1/2. The proliferative response to NNK and isoproterenol were inhibited by the use of beta-blockers (propranolol), and the inhibitors of adenylyl cyclase (SQ 22536), EGFR-specific tyrosine kinase (AG 1478) and Erk (PD 98059). Conclusion: These findings suggest that the NNK -mediated β-adrenergic receptor transactivation of the EGFR and phosphorylation of Erk1/2 in immortalized human pancreatic duct epithelial cells as a novel mechanism might contribute to the development of tobacco-associated pancreatic carcinogenesis.Keywords
This publication has 31 references indexed in Scilit:
- Cyclic AMP Induces Transactivation of the Receptors for Epidermal Growth Factor and Nerve Growth Factor, Thereby Modulating Activation of MAP Kinase, Akt, and Neurite Outgrowth in PC12 CellsJournal of Biological Chemistry, 2002
- The cyclooxygenase inhibitor ibuprofen and the FLAP inhibitor MK886 inhibit pancreatic carcinogenesis induced in hamsters by transplacental exposure to ethanol and the tobacco carcinogen NNKZeitschrift für Krebsforschung und Klinische Onkologie, 2002
- Immortal Human Pancreatic Duct Epithelial Cell Lines with Near Normal Genotype and PhenotypeThe American Journal of Pathology, 2000
- Molecular biology of pancreatic cancer; oncogenes, tumour suppressor genes, growth factors, and their receptors from a clinical perspectiveCancer Treatment Reviews, 2000
- β-adrenergic regulation of ion transport in pancreatic ducts: Patch-clamp study of isolated rat pancreatic ductsGastroenterology, 1998
- Gβγ Subunits Mediate Src-dependent Phosphorylation of the Epidermal Growth Factor ReceptorJournal of Biological Chemistry, 1997
- Regulation of transcription by MAP kinase cascadesCurrent Opinion in Cell Biology, 1996
- Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptorsNature, 1996
- Recent Studies on Mechanisms of Bioactivation and Detoxification of 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone (NNK), A Tobacco-Specific Lung CarcinogenCritical Reviews in Toxicology, 1996
- Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha.Journal of Clinical Investigation, 1992