Abstract
Imputation of missing data and the use of haplotype-based association tests can improve the power of genome-wide association studies (GWAS). In this article, I review methods for haplotype inference and missing data imputation, and discuss their application to GWAS. I discuss common features of the best algorithms for haplotype phase inference and missing data imputation in large-scale data sets, as well as some important differences between classes of methods, and highlight the methods that provide the highest accuracy and fastest computational performance.