Electromagnetic determination of soil water content: Measurements in coaxial transmission lines
- 1 June 1980
- journal article
- research article
- Published by American Geophysical Union (AGU) in Water Resources Research
- Vol. 16 (3), 574-582
- https://doi.org/10.1029/wr016i003p00574
Abstract
The dependence of the dielectric constant, at frequencies between 1 MHz and 1 GHz, on the volumetric water content is determined empirically in the laboratory. The effect of varying the texture, bulk density, temperature, and soluble salt content on this relationship was also determined. Time‐domain reflectometry (TDR) was used to measure the dielectric constant of a wide range of granular specimens placed in a coaxial transmission line. The water or salt solution was cycled continuously to or from the specimen, with minimal disturbance, through porous disks placed along the sides of the coaxial tube.Four mineral soils with a range of texture from sandy loam to clay were tested. An empirical relationship between the apparent dielectric constant Ka and the volumetric water content θv, which is independent of soil type, soil density, soil temperature, and soluble salt content, can be used to determine θv, from air dry to water saturated, with an error of estimate of 0.013. Precision of θv to within ±0.01 from Ka can be obtained with a calibration for the particular granular material of interest. An organic soil, vermiculite, and two sizes of glass beads were also tested successfully. The empirical relationship determined here agrees very well with other experimenters' results, which use a wide range of electrical techniques over the frequency range of 20 MHz and 1 GHz and widely varying soil types. The results of applying the TDR technique on parallel transmission lines in the field to measure θv versus depth are encouraging.This publication has 10 references indexed in Scilit:
- A Frequency Shift Dielectric Soil Moisture SensorIEEE Transactions on Geoscience Electronics, 1978
- Electromagnetic Detection of Soil Moisture: Progress Report ICanadian Journal of Remote Sensing, 1977
- A Theory of the Complex Dielectric Permittivity of Soil Containing Water: The Semidisperse ModelIEEE Transactions on Geoscience Electronics, 1977
- Time-domain Reflectometry-air-gap Problem in Coaxial LinePublished by Natural Resources Canada/CMSS/Information Management ,1977
- In Situ Meter for Measuring Relative Permittivity of SoilsPublished by Natural Resources Canada/CMSS/Information Management ,1975
- Dielectric properties of soils at UHF and microwave frequenciesJournal of Geophysical Research, 1974
- Soil electromagnetic parameters as functions of frequency, soil density, and soil moistureProceedings of the IEEE, 1974
- The Application of the Theory of Heterogeneous Dielectrics to Low Surface Area Soil SystemsIEEE Transactions on Geoscience Electronics, 1973
- Measurement of dielectrics in the time domainThe Journal of Physical Chemistry, 1969
- In situmeasurement of moisture in soil and similar substances by `fringe' capacitanceJournal of Scientific Instruments, 1966