A neural network regulator for turbogenerators

Abstract
A neural network (NN) based regulator for nonlinear, multivariable turbogenerator control is presented. A hierarchical architecture of an NN is proposed for regulator design, consisting of two subnetworks which are used for input-output (I-O) mapping and control, respectively, based on the back-propagation (BP) algorithm. The regulator has the flexibility for accepting more sensory information to cater to multi-input, multioutput systems. Its operation does not require a reference model or inverse system model and it can produce more acceptable control signals than are obtained by using sign of plant errors during training I-O mapping of turbogenerator systems using NNs has been investigated and the regulator has been implemented on a complex turbogenerator system model. Simulation results show satisfactory control performance and illustrate the potential of the NN regulator in comparison with an existing adaptive controller

This publication has 7 references indexed in Scilit: