On Finite Groups with an Abelian Sylow Group

Abstract
We shall consider finite groups of order of g which satisfy the following condition:(*) There exists a prime p dividing g such that if P ≠ 1 is an element of p-Sylow group ofthen the centralizer(P) of P incoincides with the centralizer() of in.This assumption is satisfied for a number of important classes of groups. It also plays a role in discussing finite collineation groups in a given number of dimensions.Of course (*) implies that is abelian. It is possible to obtain rather detailed information about the irreducible characters of groups in this class (§ 4).

This publication has 11 references indexed in Scilit: