Changes in Photosystem II Account for the Circadian Rhythm in Photosynthesis in Gonyaulax polyedra

Abstract
Cell-free extracts that show activity in photosynthetic electron flow have been prepared from the unicellular dinoflagellate, Gonyaulax polyedra. Electron flow, as O2 uptake, was measured through both photo-system I and II from water to methyl viologen, through photosystem I alone from reduced 2,6-dichlorophenol indophenol to methyl viologen which does not include the plastoquinone pool or from duroquinol to methyl viologen which includes the plastoquinone pool. Electron flow principally through photosystem II was measured from water to diaminodurene and ferricyanide, as O2 evolution. Cultures of Gonyaulax were grown on a 12-hour light:12 hour dark cycle to late log phase, then transferred to constant light at the beginning of a light period. After 3 days, measurements of electron flow were made at the maximum and minimum of the photosynthetic rhythm, as determined from measurements of the rhythm of bioluminescence. Photosynthesis was also measured in whole cells, either as 14C fixation or O2 evolution. Electron flow through both photosystems and through photosystem II alone were clearly rhythmic, while electron flow through photosystem I, including or excluding the plastoquinone pool, was constant with time in the circadian cycle. Thus, only changes in photosystem II account for the photosynthesis rhythm in Gonyaulax.