Abstract
In this study we investigated the underlying mechanisms that confer resistance on mature macrophages with the use of macrophage colony-stimulating factor (M-CSF)-induced bone marrow-derived macrophages (BMDM). In the presence of M-CSF, immature precursor cells were induced to undergo proliferation and differentiation into mature macrophages in vitro with cell morphology similar to that of tissue macrophages by day 7-10. Immunoblot analyses showed that bone marrow precursors express appreciable levels of caspase-3 and caspase-9 but no or very low levels of c-fms (M-CSF receptor) and the apoptosis regulators X-linked inhibitor of apoptosis protein (XIAP), c-IAP-1, Bcl-2 and Bax. The differentiation of BMDM is associated with a steady and gradual increase in the levels of c-fms, XIAP, c-IAP-1, Bcl-2 and Bax, reaching maximal levels by day 7. However, the levels of caspase-3 and caspase-9 stayed essentially unchanged even after prolonged incubation (more than 10 days) with M-CSF. Unlike bone marrow precursor cells, mature BMDM (day 7-10) were resistant to apoptosis induced by M-CSF depletion, which includes the activation of caspase-3 and caspase-9 and the degradation of XIAP, Bcl-2 and Bax proteins in the process. Treatment of day 7 BMDM with XIAP anti-sense oligonucleotides (oligos), but not sense oligos, partly abolished their resistance to apoptosis. By using a gel-shift assay and a specific nuclear factor kappaB (NF-kappaB) inhibitor, we demonstrated that NF-kappaB activity is responsible for the up-regulation of XIAP in M-CSF-treated macrophages. In addition, treatment of starved macrophages with M-CSF induced a rapid phosphorylation of Akt kinase before the activation of NF-kappaB. Our results showed that XIAP is one of the anti-apoptotic regulators that confer resistance on mature macrophages by M-CSF.