Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa

Abstract
The effects of leaf hairs (pubescence) on leaf spectral characteristics were measured for the drought-deciduous desert shrub Encelia farinosa. Leaf absorptance to solar radiation is diminished by the presence of pubescence. The pubescence appears to be reflective only after the hairs have dried out. There are seasonal changes in leaf absorptance; leaves produced at the beginning of a growing season have high absorptances, whereas leaves produced during the growing season are more pubescent and have lower absorptances. The decrease in leaf absorptance is the result of an increase in pubescence density and thickness. Between 400 and 700 nm (visible wavelengths), pubescence serves as a blanket reflector. However, over the entire solar spectrum (400–3000 nm), the pubescence preferentially reflects near infrared radiation (700–3000 nm) over photosynthetically useful solar radiation (400–700 nm). Leaf absorptance to solar radiation (400–3000 nm) varies between 46 and 16%, depending on pubescence; whereas leaf absorptance to photosynthetically useful radiation (400–700 nm) may vary from 81 to 29%.