An Integrated Strategy to Study Muscle Development and Myofilament Structure in Caenorhabditis elegans

Abstract
A crucial step in the development of muscle cells in all metazoan animals is the assembly and anchorage of the sarcomere, the essential repeat unit responsible for muscle contraction. In Caenorhabditis elegans, many of the critical proteins involved in this process have been uncovered through mutational screens focusing on uncoordinated movement and embryonic arrest phenotypes. We propose that additional sarcomeric proteins exist for which there is a less severe, or entirely different, mutant phenotype produced in their absence. We have used Serial Analysis of Gene Expression (SAGE) to generate a comprehensive profile of late embryonic muscle gene expression. We generated two replicate long SAGE libraries for sorted embryonic muscle cells, identifying 7,974 protein-coding genes. A refined list of 3,577 genes expressed in muscle cells was compiled from the overlap between our SAGE data and available microarray data. Using the genes in our refined list, we have performed two separate RNA interference (RNAi) screens to identify novel genes that play a role in sarcomere assembly and/or maintenance in either embryonic or adult muscle. To identify muscle defects in embryos, we screened specifically for the Pat embryonic arrest phenotype. To visualize muscle defects in adult animals, we fed dsRNA to worms producing a GFP-tagged myosin protein, thus allowing us to analyze their myofilament organization under gene knockdown conditions using fluorescence microscopy. By eliminating or severely reducing the expression of 3,300 genes using RNAi, we identified 122 genes necessary for proper myofilament organization, 108 of which are genes without a previously characterized role in muscle. Many of the genes affecting sarcomere integrity have human homologs for which little or nothing is known. Muscular diseases affect many people worldwide. While we have learned much about the sarcomere, the basic building block of muscle cells, there are still numerous questions that remain to be answered. We must learn more about proteins expressed in muscle and how they interact so that better treatments for myopathies can be developed. The nematode Caenorhabditis elegans is a valuable model organism for the study of muscle due to similarities between worm body wall muscle and vertebrate muscle, along with its semi-transparent cuticle that allows for visualization of muscle structures in live animals. We have used transcriptional profiling methods to identify the majority of genes that are expressed in the embryonic body wall muscle cells of C. elegans. To gain insight into possible functions performed by these genes and their corresponding proteins, we examined animals and muscle cells for abnormalities after the targeted inactivation of about 3,300 genes. We identified 122 genes necessary for proper myofilament organization, 108 of which had no previously characterized role in muscle. This approach proved to be a rapid and sensitive means to identify genes that affect muscle differentiation and sarcomere assembly.