Inflammatory Aetiology of Human Myometrial Activation Tested Using Directed Graphs

Abstract
There are three main hypotheses for the activation of the human uterus at labour: functional progesterone withdrawal, inflammatory stimulation, and oxytocin receptor activation. To test these alternatives we have taken information and data from the literature to develop causal pathway models for the activation of human myometrium. The data provided quantitative RT-PCR results on key genes from samples taken before and during labour. Principal component analysis showed that pre-labour samples form a homogenous group compared to those during labour. We therefore modelled the alternative causal pathways in non-labouring samples using directed graphs and statistically compared the likelihood of the different models using structural equations and D-separation approaches. Using the computer program LISREL, inflammatory activation as a primary event was highly consistent with the data (p = 0.925), progesterone withdrawal, as a primary event, is plausible (p = 0.499), yet comparatively unlikely, oxytocin receptor mediated initiation is less compatible with the data (p = 0.091). DGraph, a software program that creates directed graphs, produced similar results (p = 0.684, p = 0.280, and p = 0.04, respectively). This outcome supports an inflammatory aetiology for human labour. Our results demonstrate the value of directed graphs in determining the likelihood of causal relationships in biology in situations where experiments are not possible. This paper describes how novel computational approaches have been used to test hypotheses for important physiological events when the traditional approaches of animal studies and experiment are not possible. The processes that regulate the onset of human labour are presently unknown, principally because there are no good animal models for human pregnancy and because it is unethical to conduct experiments on pregnant women undergoing labour. However, several hypotheses have been advanced to explain the trigger for labour, including: a functional withdrawal of the hormone progesterone, increased inflammation in the uterus, and increased signalling through the hormone oxytocin. To test these hypotheses the researchers used data on the messenger RNA concentrations of critical variables in samples of uterine muscle taken from 12 women undergoing caesarean section prior to labour and 12 women during labour. Directed graphs for each of the proposed hypotheses were then generated, where the graphs represent the direction of causal influence between different variables. Statistical testing determined how well the graphs of each hypothesis matched the experimental data. The results strongly support an inflammatory origin for the onset of human labour. This approach could be applied to other problems in human biology where the traditional approaches of experiments and animal models are not possible.