Abstract
13C nuclear magnetic resonance revealed an unusual pathway for the biosynthesis of lipids in Halobacterium cutirubrum and H. halobium. Mevalonic acid was not synthesized from three acetyl-coenzyme A molecules, as has been suggested previously, and the branch-methyl and methine carbons in phytanyl chains were derived from neither acetate nor glycerol. Instead, they were supplied by the degradation of amino acids, in particular of lysine. Presumably, two different types of two-carbon fragments were used simultaneously by halobacteria for the biosynthesis of mevalonate. The labeling pattern of squalene supported the above conclusions. Based on these data, a general scheme is proposed to account for the contribution of lysine-to-lipid biosynthesis.