Genetic and molecular characterization of murine GATA‐1 in Aspergillus defines a critical role for the N‐terminal finger

Abstract
We have utilized Aspergillus nidulans as a model system for the characterization of the major vertebrate transcription factor GATA-1. This has been achieved both by analysing the function of murine GATA-1 directly and by using direct gene replacement to introduce chimaeric areA::GATA-1 derivatives at the areA locus, which encodes a GATA factor involved in regulating nitrogen metabolism in A. nidulans. Although GATA-1 shows only limited function when expressed in A. nidulans, the C-terminal GATA DNA-binding domain can replace the native GATA domain of AREA and retain near wild-type function. Surprisingly, inclusion of the N-terminal DNA-binding domain of GATA-1 has a major role in determining the function of areA::GATA constructs in vivo, leading to a general loss of activation. This negative function is partially dominant and is dependent on both the fidelity of the zinc-chelating structure and a second factor encoded by A. nidulans. The presence of two GATA domains also disrupts modulation of AREA activity. The ability of duplicate GATA domains to disrupt normal signal transduction is not dependent on the relative position of the domains or on the fidelity of the zinc-chelating structure. This demonstrates the utility of nitrogen metabolism's regulation in A. nidulans as a model system for the molecular and genetic characterization of heterologous GATA factors while also providing insights into native Aspergillus regulatory components.