Quantum diffusion and localization in disordered systems
- 1 April 1985
- journal article
- research article
- Published by Taylor & Francis in Philosophical Magazine Part B
- Vol. 51 (4), 453-464
- https://doi.org/10.1080/13642818508240591
Abstract
We describe quantum diffusion of the electrons in a disordered system by requiring that ψ(r, t)|2 obeys a diffusion equation, where ψ(r, t) is the time-dependent wavefunction. It is found that, regardless of the weakness of the disorder, this requirement leads to electron eigenstates which consist of a power-law component for dimepsion d1 and a logarithmic correction for d=1, in addition to an extended function. For d ≤ 2, this is correct only below a certain length scale. As a result, even for kFl≫l, the conductivity σ is reduced from the Boltzmann conductivity σB in agreement with diagrammatic calculations. By expanding the eigenstate in terms of 1/rn, it is shown that the 1/rd-1 term is responsible for the reduction of σ in the weak-disorder limit. It is demonstrated that in three dimensions one can extrapolate the formula for the conductivity down to the Anderson transition to obtain σ = g2σB[1 - (C/g2k2 Fl2) (1-l/L)] where g is the reduction in the density of states due to disorder and C is a dimensionless constant of order unity which depends on some cut-off length.Keywords
This publication has 30 references indexed in Scilit:
- Experimental tests of localization in semiconductorsPhysica B+C, 1983
- Density of states and screening near the mobility edgePhysical Review B, 1982
- Temperature-dependent conductivity of metallic doped semiconductorsPhysical Review B, 1982
- Stress Tuning of the Metal-Insulator Transition at Millikelvin TemperaturesPhysical Review Letters, 1982
- The Anderson transition in disordered 2D systemsJournal of Physics C: Solid State Physics, 1982
- Scaling theory of the Hall effect in disordered electronic systemsPhysical Review B, 1981
- Sharp Metal-Insulator Transition in a Random SolidPhysical Review Letters, 1980
- Possible Role of Incipient Anderson Localization in the Resistivities of Highly Disordered MetalsPhysical Review Letters, 1980
- The mobility edge problem: Continuous symmetry and a conjectureZeitschrift für Physik B Condensed Matter, 1979
- Scaling Theory of Localization: Absence of Quantum Diffusion in Two DimensionsPhysical Review Letters, 1979