Specificity for Nicotinamide Adenine Dinucleotide by Nitrate Reductase from Leaves

Abstract
Preliminary work revealed that nitrate reductase in crude extracts prepared from leaves of certain corn genotypes as well as soybeans could utilize NADPH as well as NADH as the electron donor. Isoelectric focusing and diethylaminoethyl cellulose chromatography confirmed previous findings that NADH and NADPH activities could not be separated, which suggests the involvement of a single enzyme. Nitrate reduction with both cofactors varies with plant species, plant age, and assay conditions. The ability of the nitrate reductase from a given genotype to utilize NADPH was associated with the amount of NADPH-phosphatase in the extract. While diethylaminoethyl cellulose chromatography of plant extracts separated nitrate reductase from the bulk (90%) of the phosphatase and caused a decrease in the NADPH activity, the residual level of phosphatase was sufficient to account for the apparent NADPH nitrate reductase activity. Addition of KH2PO4 and KF, inhibitors of NADPH-phosphatase activity in in vitro assays, caused a drastic reduction or abolishment of NADPH-mediated nitrate reductase activity but were without effect on NADH nitrate reductase activity. It is concluded that NADPH-nitrate reduction, in soybean and certain corn genotypes, is an artifact resulting from the conversion of NADPH to NADH by a phosphatase and that the enzyme in leaf tissue is NADH-dependent (E.C.1.6.6.1).