Improving a Designed Photocontrolled DNA-Binding Protein
- 10 January 2011
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 50 (7), 1226-1237
- https://doi.org/10.1021/bi101432p
Abstract
Photocontrolled transcription factors could be powerful tools for probing the roles of transcriptional processes in a variety of settings. Previously, we designed a photocontrolled DNA-binding protein based on a fusion between the bZIP region of GCN4 and photoactive yellow protein from Halorhodospira halophila [Morgan, S. A., et al. (2010) J. Mol. Biol. 399, 94−112]. Here we report a structure-based attempt to improve the degree of photoswitching observed with this chimeric protein. Using computational design tools PoPMuSiC 2.0, Rosetta, Eris, and bCIPA, we identified a series of single- and multiple-point mutations that were expected to stabilize the folded dark state of the protein and thereby enhance the degree of photoswitching. While a number of these mutations, particularly those that introduced a hydrophobic residue at position 143, did significantly enhance dark-state protein stability as judged by urea denaturation studies, dark-state stability did not correlate directly with the degree of photoswitching. Instead, the influence of mutations on the degree of photoswitching was found to be related to their effects on the degree to which DNA binding slowed the pB to pG transition in the PYP photocycle. One mutant, K143F, caused an ∼10-fold slowing of the photocycle and also showed the largest difference in the apparent Kd for DNA binding, 3.5-fold lower, upon irradiation. This change in the apparent Kd causes a 12-fold enhancement in the fraction bound DNA upon irradiation due to the cooperativity of DNA binding by this family of proteins. The results highlight the strengths and weaknesses of current approaches to a practical problem in protein design and suggest strategies for further improvement of designed photocontrolled transcription factors.This publication has 36 references indexed in Scilit:
- Structure-Based Design of a Photocontrolled DNA Binding ProteinJournal of Molecular Biology, 2010
- Computational Evaluation of Protein Stability Change upon MutationsPublished by Springer Nature ,2010
- Coiled Coil Domains: Stability, Specificity, and Biological ImplicationsChemBioChem, 2004
- Photoreception in Neurospora : a tale of two White Collar proteinsCellular and Molecular Life Sciences, 2003
- A Large Scale Test of Computational Protein Design: Folding and Stability of Nine Completely Redesigned Globular ProteinsJournal of Molecular Biology, 2003
- Anticipatory active-site motions and chromophore distortion prime photoreceptor PYP for light activationNature Structural & Molecular Biology, 2003
- Functions of AP1 (Fos/Jun) in bone developmentAnnals Of The Rheumatic Diseases, 2002
- A light-switchable gene promoter systemNature Biotechnology, 2002
- Amino Acids in the N-Terminal Region Regulate the Photocycle of Photoactive Yellow ProteinThe Journal of Biochemistry, 2001
- PoPMuSiC, an algorithm for predicting protein mutant stability changes. Application to prion proteinsProtein Engineering, Design and Selection, 2000