Abstract
An infinite genetic population of haploid particles is considered in which selection is controlled by a single locus at which there are an infinite number of possible alleles. These alleles are arranged in an infinite sequence and mutation occurs only to nearest neighbours. This is the ‘ladder model’ of Ohta and Kimura which was put forward as a possible explanation of the distributions of electromorphs in electrophoretic observations. Following an earlier paper, conditions are obtained on the selection coefficients which ensure that a stationary stable state exists. One such model is solved explicitly. The problem, important in evolutionary theory, of the rate of approach to such stationary states starting from some other state, is also discussed briefly.
Keywords

This publication has 6 references indexed in Scilit: