An avian muscle factor related to MyoD1 activates muscle-specific promoters in nonmuscle cells of different germ-layer origin and in BrdU-treated myoblasts.

Abstract
We isolated the cDNA encoding a myogenic factor expressed in embryonic chick breast muscle by virtue of its weak hybridization to the mouse MyoD1 clone. Nucleotide sequence analysis and amino acid comparison define this clone, CMD1, as encoding a protein similar to mouse MyoD1. CMD1 encodes a polypeptide smaller than MyoD1, 298 versus 318 amino acids, respectively, and is 80% concordant by amino acid sequence overall. The basic and myc domains required for myogenic conversion of mouse 10T1/2 'fibroblasts' to myoblasts with MyoD1 are completely conserved in CMD1. CMD1 is just as efficient as the mouse homolog in myogenic conversion of 10T1/2 cells and coactivates the endogenous mouse MyoD1 gene in the process. The efficiency of myoblast conversion depends on the levels of CMD1 expression and suggests that the cellular concentration of CMD1 plays a role in the onset of myogenesis. Transient expression of CMD1 in a variety of nonmuscle cells from different germ-layer origins activates both cotransfected muscle-specific promoters and, in some cases, endogenous muscle-specific genes. 5-Bromodeoxyuridine (BrdU) treatment of chicken and mouse myoblasts reduces the expression of CMD1 and MyoD1, respectively, and may explain how this thymidine analog inhibits myogenesis and the activity of transfected muscle-specific promoters in BrdU-treated myoblasts. Transient expression of CMD1 in BrdU-treated myoblasts reactivates cotransfected muscle-specific promoters. CMD1 activates muscle-specific promoters in cotransfections regardless of cell type, whereas 'housekeeping' or constitutive promoters can be activated moderately, unaffected, or repressed, depending on the promoter and cell background. The rate and degree of myogenic conversion may be more restricted by cell phenotype than by germ-layer origin.