Abstract
The interphase nucleus of the normal rat hepatocyte has been studied in ultrathin frozen sections after glutaraldehyde fixation and the modification of various staining procedures known to be specific for DNA structures (Moyne's thallium stain, Gautier's osmium-ammine) or preferential for RNP carriers and basic proteins (regressive stains based on the use of EDTA or citrate, negatively charged colloidal iron). The results are comparable to those obtained after classical dehydration and embedding. Particular attention has been paid to the nucleolus and extranucleolar RNP components, such as perichromatin fibrils and granules, as well as interchromatin granules. A striking observation was the uneven size and the strongly increased number of perichromatin granules, and the appearance of a contiguous interchromatin net, containing nucleoproteins. Cryoultramicrotomy without embedding appears to be very useful for the exploration of the nucleus in thick sections which remain sufficiently transparent even with the usual accelerating voltages.