The effects of oxidized low density lipoproteins on inducible mouse macrophage gene expression are gene and stimulus dependent.
Open Access
- 1 May 1995
- journal article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 95 (5), 2020-2027
- https://doi.org/10.1172/jci117887
Abstract
Oxidized LDL has been previously reported to suppress the expression of genes induced in mononuclear phagocytes by inflammatory stimuli. In this study we extend these findings to demonstrate that the suppressive effects of oxidized LDL vary depending upon the gene being monitored and the stimulus being used to induce or enhance its expression. The expression of a selection of LPS-inducible genes exhibited differential sensitivity to pretreatment with oxidized LDL. Furthermore, the ability of oxidized LDL to suppress gene expression varied markedly with the inducing stimulus used. TNF alpha and IP-10 mRNA expression induced by IFN gamma and IL-2 was markedly more sensitive to suppression by oxidized LDL than that induced by LPS. The cooperative effects of IFN gamma and LPS on the expression of the inducible nitric oxide synthase gene were suppressed by oxidized LDL while the antagonistic effect of IFN gamma on LPS-induced expression of the TNF receptor type II mRNA was not altered. The suppressive activity of LDL was acquired only after extensive oxidation and was localized in the extractable lipid component. These results suggest a potent and direct connection between the oxidative modification of LDL and the chronic inflammation seen in atherogenic lesions. Furthermore, the appreciable selectivity of oxidized LDL in mediating secondary control of cytokine gene expression demonstrates that the active material(s) is targeted to disrupt specific intracellular signaling pathways.This publication has 38 references indexed in Scilit:
- Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization.Journal of Clinical Investigation, 1988
- Characterization of lipopolysaccharide-induced macrophage gene expression.The Journal of Immunology, 1988
- Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis.Proceedings of the National Academy of Sciences, 1988
- Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100.Journal of Lipid Research, 1987
- Secretory products of macrophages.Journal of Clinical Investigation, 1987
- The Pathogenesis of Atherosclerosis — An UpdateNew England Journal of Medicine, 1986
- Cloning and expression in Escherichia coli of the cDNA for murine tumor necrosis factor.Proceedings of the National Academy of Sciences, 1985
- ROLE OF MACROPHAGES IN ATHEROSCLEROSIS - SEQUENTIAL OBSERVATIONS OF CHOLESTEROL-INDUCED RABBIT AORTIC LESION BY THE IMMUNOPEROXIDASE TECHNIQUE USING MONOCLONAL ANTIMACROPHAGE ANTIBODY1985
- Isolation of biologically active ribonucleic acid from sources enriched in ribonucleaseBiochemistry, 1979
- A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATIONCanadian Journal of Biochemistry and Physiology, 1959