Abstract
Calculations are presented of the development of the turbulent boundary layer on a rotating cylinder with its axis along the stream, and the results are compared with measurements made by Parr. With the choice of a suitable co-ordinate system, the boundary layer downstream of the nose of the cylinder approximates closely to a condition of two-dimensionality, and a simple integral method of solution can be applied. The only evidence of three-dimensionality lies in the destabilizing effect of rotation on the turbulence structure of the layer and an analysis of this instability has been made which relates changes in mixing length and entrainment to an instability parameter in the form of a Richardson number.In spite of the changes in shear stress distribution and entrainment brought about by rotation, mean velocity profiles and skin friction values are found to be related to H and Rθ in the same way as for the stationary flat plate.