Non-parametric similarity measures for unsupervised texture segmentation and image retrieval

Abstract
In this paper we propose and examine non-parametric statistical tests to define similarity and homogeneity measures for textures. The statistical tests are applied to the coefficients of images filtered by a multi-scale Gabor filter bank. We demonstrate that these similarity measures are useful for both, texture based image retrieval and for unsupervised texture segmentation, and hence offer a unified approach to these closely related tasks. We present results on Brodatz-like micro-textures and a collection of real-word images.

This publication has 7 references indexed in Scilit: