Genetic relationships among the oral streptococci

Abstract
Genetic relationships and species limits among the oral streptococci were determined by an analysis of electrophoretically demonstrable variation in 16 metabolic enzymes. Fifty isolates represented 40 electrophoretic types, among which the mean genetic diversity per locus was 0.857. Mannitol-1-phosphate dehydrogenase was not detected in isolates of the sanguis species complex, and glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were absent in species of the mutans complex. Clustering from a matrix of Gower's coefficient of genetic similarity placed the 40 electrophoretic types in 10 well-defined groups corresponding to the Streptococcus species S. mutans, S. sobrinus, S. cricetus, S. rattus, S. ferus, S. oralis (mitior), two distinct assemblages of S. sanguis strains, and two subdivisions of "S. milleri." The assignments of isolates to these groups were the same as those indicated by DNA hybridization experiments, and the coefficient of correlation between genetic distance estimated by multilocus enzyme electrophoresis and genetic similarity indexed by DNA hybridization was -0.897 (P less than 0.001) for 50 pairwise combinations of isolates. S. ferus, which is widely believed to be a member of the mutans complex, was shown to be phylogenetically closer to species of the sanguis complex.