Abdominal MR Imaging with a Volumetric Interpolated Breath-hold Examination

Abstract
To compare a T1-weighted, three-dimensional (3D), gradient-echo (GRE) sequence for magnetic resonance (MR) imaging of the body (volumetric interpolated breath-hold examination, or VIBE) with a two-dimensional (2D) GRE breath-hold equivalent. Twenty consecutive patients underwent 1.5-T MR imaging. The examinations included pre- and postcontrast (20 mL gadopentetate dimeglumine) fat-saturated 2D GRE breath-hold imaging and fat-saturated volumetric interpolated breath-hold imaging before, during (arterial phase), and after injection, with thin (2-mm source images) and thick (8-mm reconstruction images) sections. The three images were compared qualitatively and quantitatively (signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]). Qualitatively, the 2-mm source images had poorer pancreatic edge definition on precontrast images compared with the other two data sets (P < .05). On gadolinium-enhanced images, scores for clarity of pancreatic edge, number of vessels visualized, and arterial ghosting were significantly lower for the postcontrast 2D GRE images. Quantitatively, SNR measurements in the liver, aorta, and renal cortex on pre- and postcontrast images were significantly higher for the 8-mm reconstruction images than for the 2D GRE or 2-mm source images (P < .05). Aorta-to-fat CNR was significantly higher on the 8-mm reconstruction images. Fat-saturated volumetric interpolated breath-hold images have quality comparable to that of conventional fat-saturated 2D GRE images.

This publication has 32 references indexed in Scilit: