Brain Regional Distribution of Glutamic Acid Decarboxylase, Choline Acetyltransferase, and Acetylcholinesterase in the Rat: Effects of Chronic Manganese Chloride Administration after Two Years

Abstract
Rats were treated chronically with manganese chloride from conception onward for a period of over 2 years in order to study the effects of manganese and aging on the activities of glutamic acid decarboxylase (GAD), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE) in hypothalamus, cerebellum, pons and medulla, striatum, midbrain, and cerebral cortex (which included the hippocampus). Manganese-treated 2-month-old and 24- to 28-month-old rats and age-matched controls were studied. In control rats during aging the activities of GAD decreased in hypothalamus (19%), pons and medulla (28%), and midbrain (22%) whereas the activities of AChE decreased in all regions (20–48%), particularly in the striatum (44–48%). Changes in ChAT activities in aging were observed only in one region—a decrease (23%) in the striatum. Life-long treatment with manganese appeared to abolish partially the decreases in aging in AChE activities in hypothalamus, cerebellum and striatum, and striatal ChAT activity. Manganese treatment also seemed to abolish the age-related decreases in GAD activities, since GAD activities in various brain regions of manganese-treated senescent rats were not significantly different from those of control young rats. These results are discussed in relation to other metabolic changes associated with aging and manganese toxicity.