Comparison of electric field emission from nitrogen-doped, type Ib diamond, and boron-doped diamond

Abstract
Field emission of electrons from boron‐ and nitrogen‐doped diamond is compared. Emission from boron‐doped diamond requires vacuum electric fields of 20–50 V μm−1, while nitrogen‐doped, type Ib diamond requires fields of 0–1 V μm−1. Since boron‐doped diamond is very conductive, very little voltage drop occurs in the diamond during emission. Nitrogen‐doped diamond is insulating, so during emission a potential of 1–10 kV appears in the diamond. This potential is a function of the back contact metal‐diamond interface. A roughened interface substantially reduces the potential in the diamond and increases emission. The electrons are often emitted from the nitrogen‐doped diamond as beamlets. These beamlets leave the surface of the diamond at angles up to 45° from the substrate normal. Although the vacuum field is small, these electrons have energies of several kV. It is unknown whether the electrons are accelerated to these energies in the bulk of the diamond, or at high electric fields near the emitting surface.