Abstract
The classical model of Chemical Vapor Infiltration (CVI) treats diffusion and surface reaction in a representative cylindrical pore. Two significant modifications to that approach are presented herein. One accounts for more complex chemistry by allowing for both gas-phase and surface reactions which lead to film growth. The other couples the pore model to a reactor model for the region external to the porous preform. The results demonstrate that it is possible to select chemical schemes that yield densification from the interior to the exterior of the preform, thus avoiding premature trapping of interior voids.