Abstract
Antigen-evoked influx of extracellular Ca2+ into mast cells may occur via store-operated Ca2+ channels called calcium release–activated calcium (CRAC) channels. In mast cells of the rat basophilic leukemia cell line (RBL-2H3), cholera toxin (CT) potentiates antigen-driven uptake of 45Ca2+ through cAMP-independent means. Here, we have used perforated patch clamp recording at physiological temperature to test whether cholera toxin or its substrate, Gs, directly modulates the activity of CRAC channels. Cholera toxin dramatically amplified (two- to fourfold) the Ca2+ release–activated Ca2+ current (ICRAC) elicited by suboptimal concentrations of antigen, without itself inducing ICRAC, and this enhancement was not mimicked by cAMP elevation. In contrast, cholera toxin did not affect the induction of ICRAC by thapsigargin, an inhibitor of organelle Ca2+ pumps, or by intracellular dialysis with low Ca2+ pipette solutions. Thus, the activity of CRAC channels is not directly controlled by cholera toxin or Gsα. Nor was the potentiation of ICRAC due to enhancement of phosphoinositide hydrolysis or calcium release. Because Gs and the A subunit of cholera toxin bind to ADP ribosylation factor (ARF) and could modulate its activity, we tested the sensitivity of antigen-evoked ICRAC to brefeldin A, an inhibitor of ARF-dependent functions, including vesicle transport. Brefeldin A blocked the enhancement of antigen-evoked ICRAC without inhibiting ADP ribosylation of Gsα, but it did not affect ICRAC induced by suboptimal antigen or by thapsigargin. These data provide new evidence that CRAC channels are a major route for Fcε receptor I–triggered Ca2+ influx, and they suggest that ARF may modulate the induction of ICRAC by antigen.