GCM Tests of Theories for the Height of the Tropopause

Abstract
The sensitivity of the tropopause height to various external parameters has been investigated using a global circulation model (GCM). The tropopause height was found to be strongly sensitive to the temperature at the earth’s surface, less sensitive to the ozone distribution, and hardly sensitive at all to moderate changes in the earth’s rotation rate. The strong sensitivity to surface temperature occurs through changes in the atmospheric moisture distribution and its resulting radiative effects. The radiative and dynamical mechanisms thought to maintain the tropopause height have been investigated in some detail. The assumption that the lower stratosphere is close to radiative equilibrium leads to an easily computed relationship between tropospheric lapse rate and tropopause height. This relationship was found to hold well in the GCM in the extratropics away from the winter pole. Possible reasons for the breakdown of the relationship in the Tropics and near the winter pole are discussed. Simple relationships predicted by two different baroclinic adjustment theories, between parameters such as potential temperature gradients, the Coriolis parameter, and tropopause height, were examined. When some of these parameters were changed explicitly in GCM experiments, the remaining parameters, determined internally by the GCM, did not respond in the predicted way. These results cast doubt on the relevance of baroclinic adjustment to the height of the tropopause.